ATV depth estimation

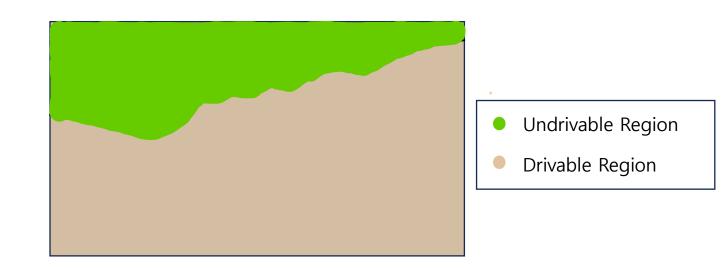
Mechanical Engineering

주기영

Detection of drivable regions in off-road conditions

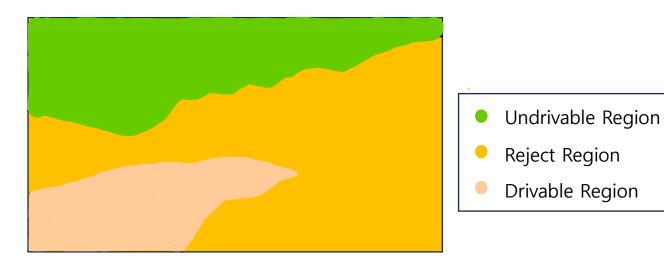
Depth estimation

- Segment image into regions or objects
- Segment image into drivable/undrivable region



Depth estimation

- Calculate distance to the target region
- Designate steep incline regions or wall regions as reject region



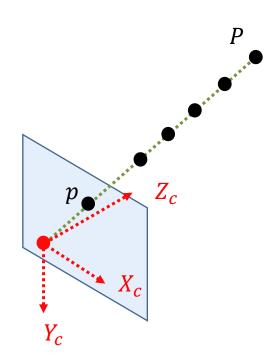
For atnomous driving

- Image real-time processing is needed

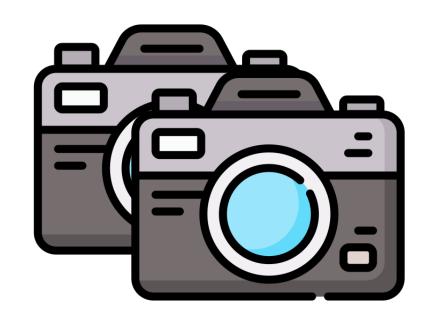
Semantic Segmentation	- Precision is more important- Using deep learning
Depth estimation	Not using deep learning for real time processingStereo depth estimation

Why do we use stereo camera?

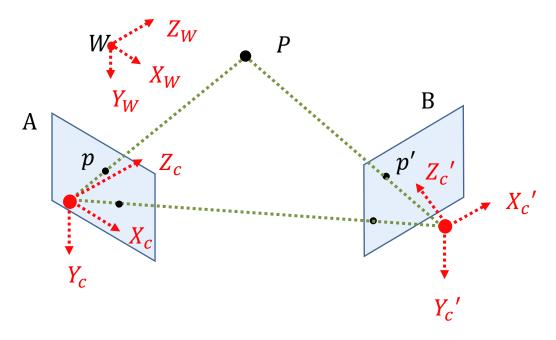
Ray of possible position



Why do we use stereo camera?



specific 3D cordinate

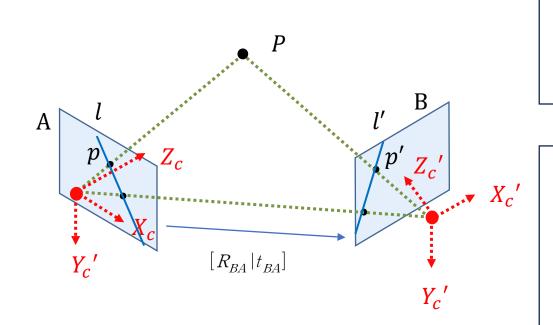


P: World coordinate

p: A image coordinate of P

p': A image coordinate of P

For calculating depth



 $[R_BA|t_BA]$: Transformation matrix

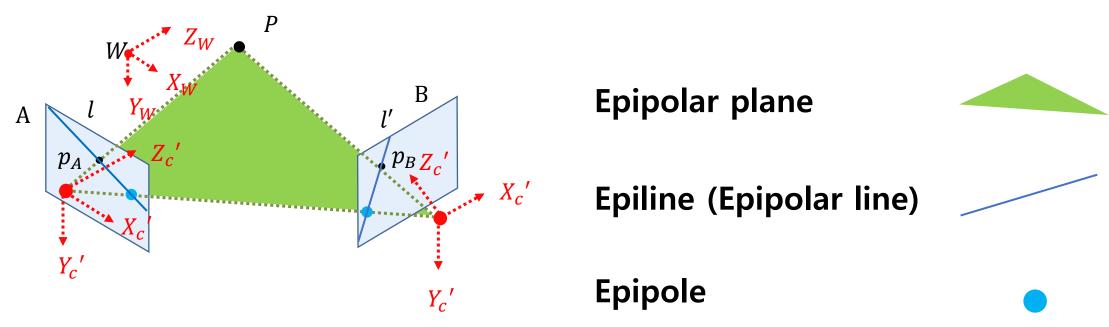
Camera calibration

: A image coordinate of P: A image coordinate of P

Epipolar geometry

We can find world cordinate of P

The geometric relationship between two camera views of the same 3D Point



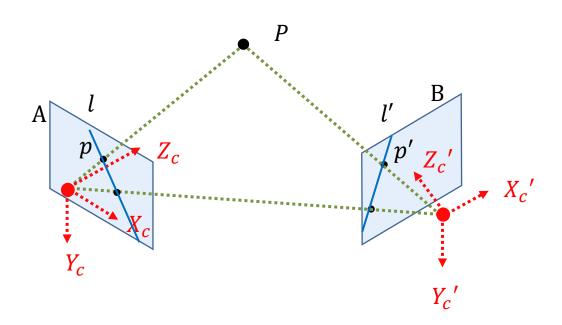
P: World cordinate

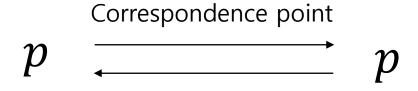
 p_A : Point projected onto camera A

 p_B : Point projected onto camera B

Correspondence point

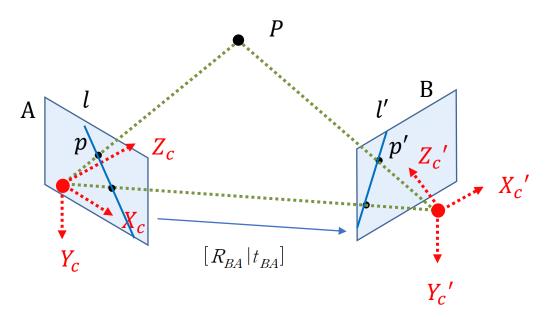
Pairs of image points representing the same world point





p lies on the epiline l p' lies on the epiline l'

Essential Matrix



 $\begin{bmatrix} t \end{bmatrix}_x = \begin{pmatrix} 0 & -t_1 & t_2 \\ t_1 & 0 & -t_3 \\ -t_2 & t_3 & 0 \end{pmatrix}$

matrix that relates corresponding points between two images

p: A image coordinate of P

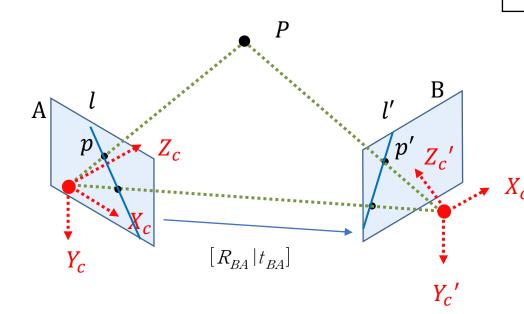
p': A image coordinate of P

E: Essential matrix

 $[R_BA|t_BA]$: Transformation matrix

$$E = [t_{BA}]_x R_{BA} \longrightarrow p'^T E p = 0$$

Projective geometry



u: A line

x: A point on a line u

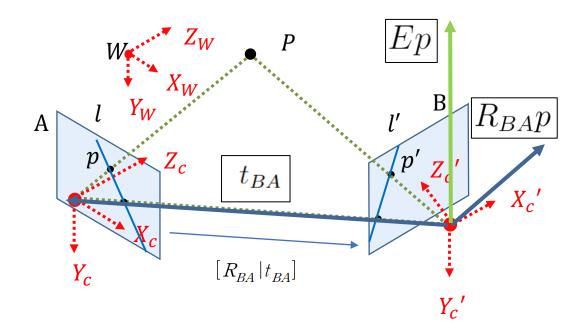
$$x^T u = 0$$

By the definition of epiline \longrightarrow $p'^T l' = 0$

 $p'^T E p = 0$ $\begin{cases} p' : \text{Correspondence point} \\ E p : \text{Epiline } l' \end{cases}$

Meaning of *Ep* vector

$$E = [t_{BA}]_x R_{BA} \longrightarrow Ep = [t_{BA}]_x R_{BA}p$$



3D World Coordinate system

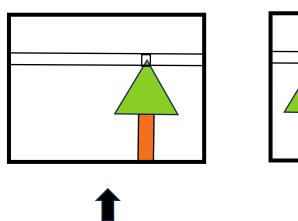
Normal vector of the Epipolar plane

B Image coordinate system

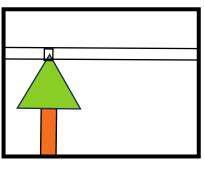
Homogeneous expression of Epiline

Depth Estimation

Finding correspondence

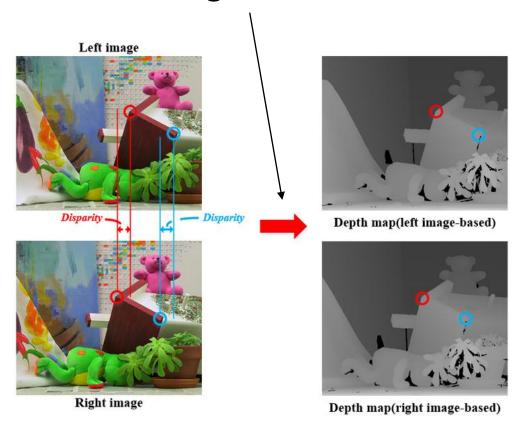


Reference Image



Target Image

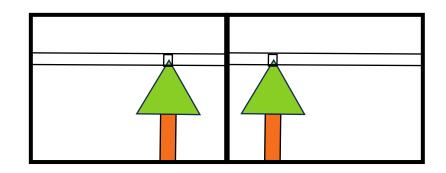
Triangulization



Depth Estimation

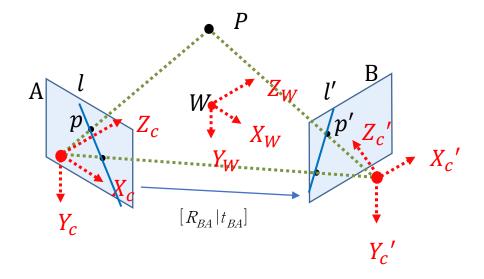
Step 1 : Correspondence Matching

- The process of calculating p'



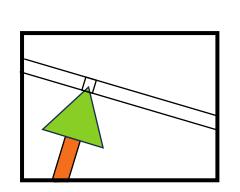
Step 2: Triangulization

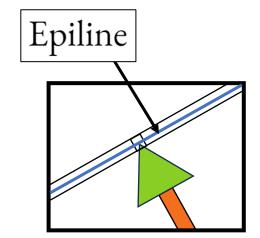
- The process of calculating world coordinate of P



Correspondence Matching

Using Epipolar geometry





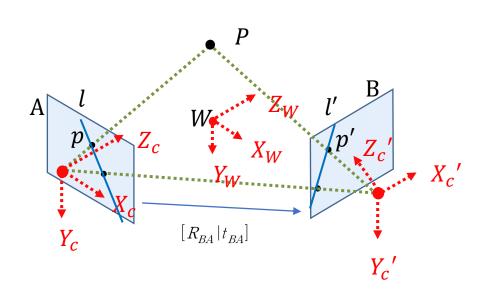
Finding Epiline

Using Essential matrix

Finding correspondence point

Using Block matching

Triangulization



Known

Camera calibration

 $[R_W A | t_W A]$: Extrinsic parmeter of camera A

 $[R_W B | t_W B]$: Extrinsic parmeter of camera B

Correspondence matching

p: A image coordinate of P

p': A image coordinate of P

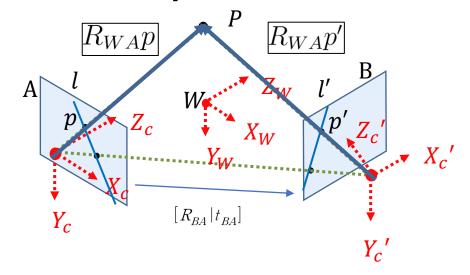
Unknown

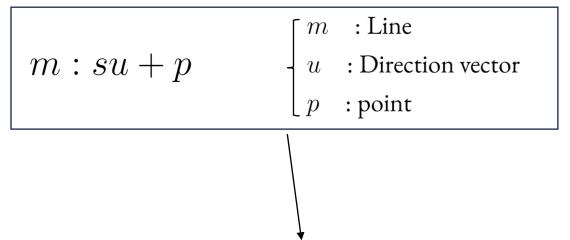
P: World cordinate

The process of finding world coordinate

Triangulization

Line expression



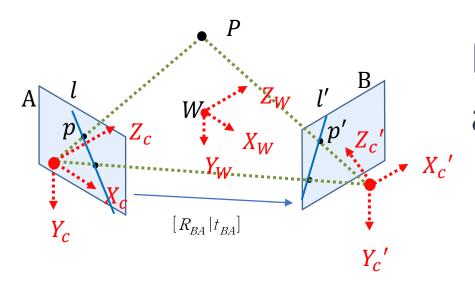


 $m_A: s_A R_{WA} p + t_{WA}$

 $m_B: s_B R_{WA} p' + t_{WA}$

Intersection point of two lines, m_1 and m_2

P



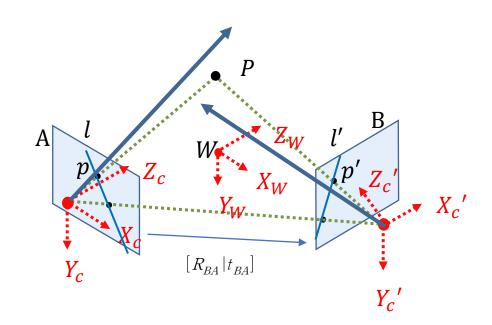
Directly using two image with arbitrary camera position

Some considerations

Considering

1. Existence of intersection point

- Camera calibration Error, Pixel Noise



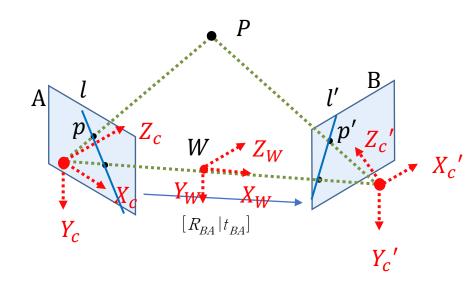
Considering

2. We can set 1D coordinate

- we don't know all world coordinate

- We can set proper coordinate for simple problem

For calculating depth, we only know one coordinate of z

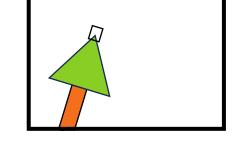


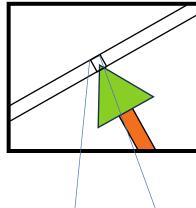
: Baseline direction

: Desired Depth direction

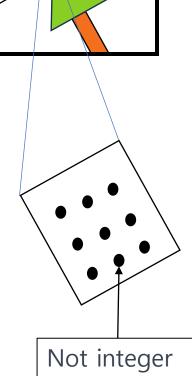
Considering

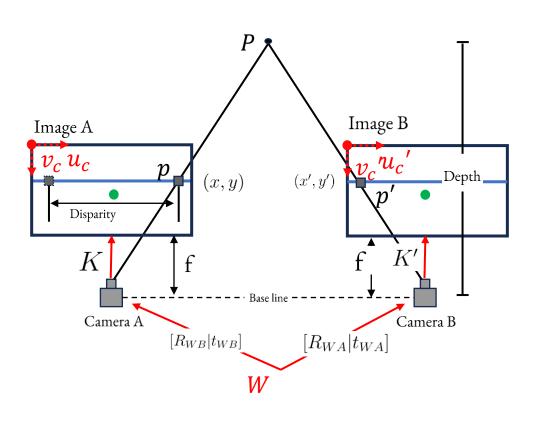
3. Problem with Block matching Algorithm





- The coordinates of the points inside the block are not integers
- Epiline is formed diagonally, it is difficult to find corresponding points along the Epiline





Camera calibration

$$\lambda \tilde{m} = K[R_{CW}|t_{CW}]\tilde{w}$$
 K : Intrinsic parameter $[R_{CW}|t_{CW}]$: Extrinsic parameter \tilde{w} : World coordinate

 \tilde{m} : Image coordinate

 \tilde{w} : World cordinate

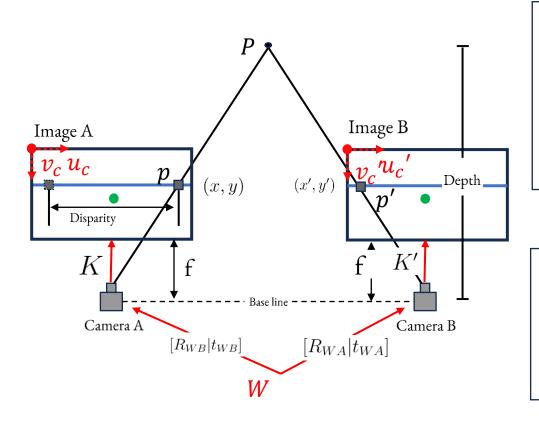
Same Intrinsic parameter

$$K = K' \longrightarrow \begin{cases} \text{Same principal point coordinate} \\ \text{Same Image ratio} \end{cases}$$

Same Rotation matrix

$$R_{WA} = R_{WB} \longrightarrow Same can$$

Same camera posture



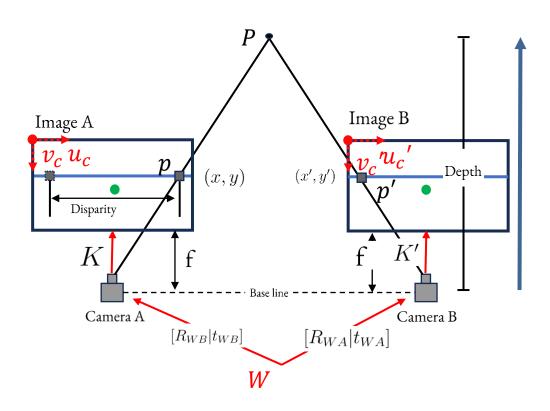
Important Effect of Ideal Modeling

- The two image planes exist within the same plane
- All Epiline is always parallel to the horizontal axis

Because

Intersection line of Epipolar plane and image plane are always parallel to Baseline

Recall three considerations



Existence of intersection point

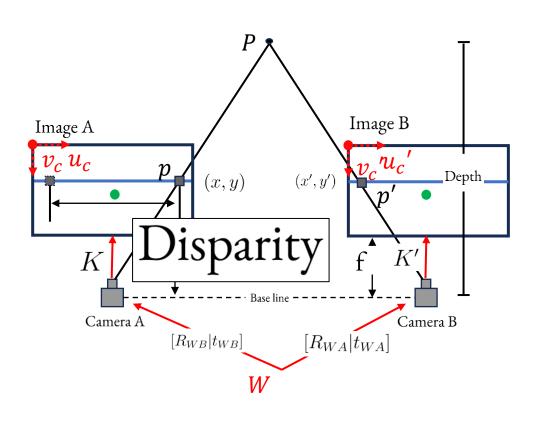
We don't consider intersection point

We can set 1D coordinate

Depth calculation in the direction the camera is facing is very easy

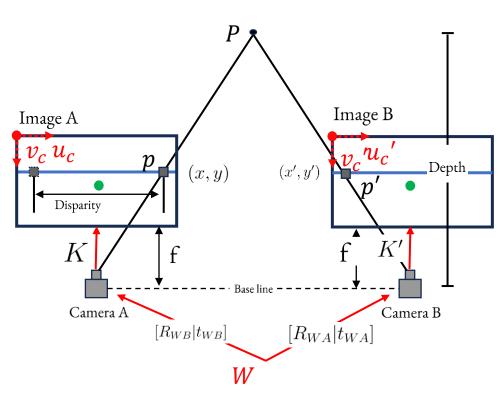
Problem with Block matching Algorithm

Epiline is parallel to the horizontal axis



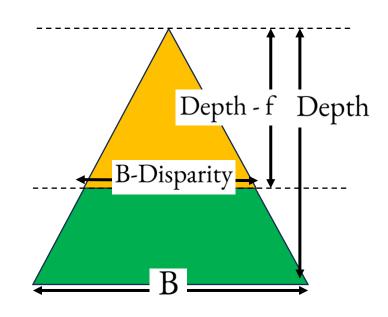
Disparity

horizontal pixel shift between correspondence point in a pair of stereo images



Depth - f : Depth = B - Disparity : B

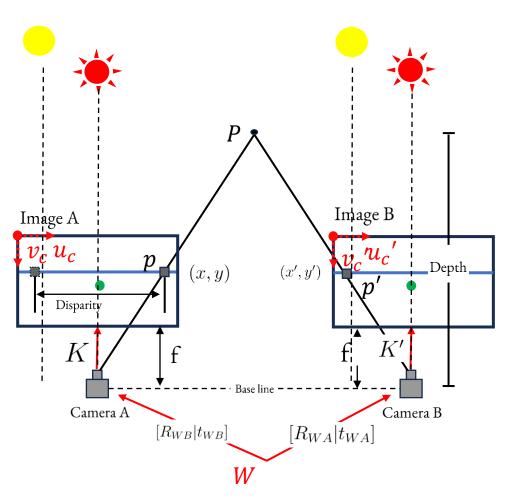
Simple Triangulization



$$Depth = \frac{f \times B}{Disparity}$$

In ideal modeling

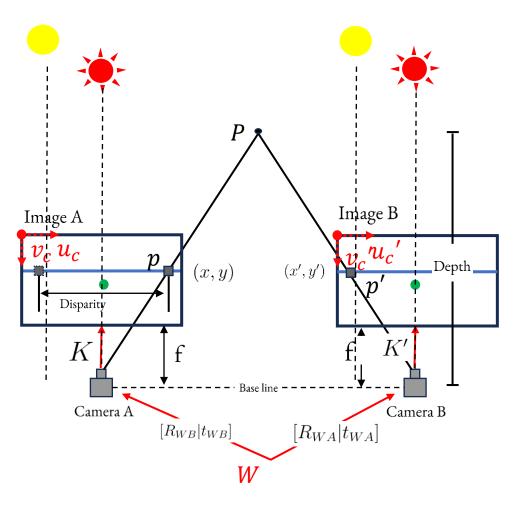
Why should the Intrinsic parameters be the same?



$$Depth = \frac{f \times B}{Disparity}$$

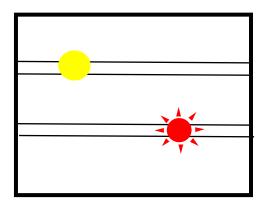
$$\lim_{Depth\to\infty} Disparity = 0$$

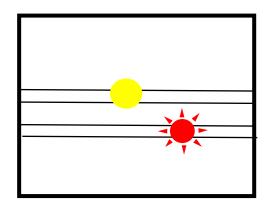
Disparity of objects that have very high depth is 0



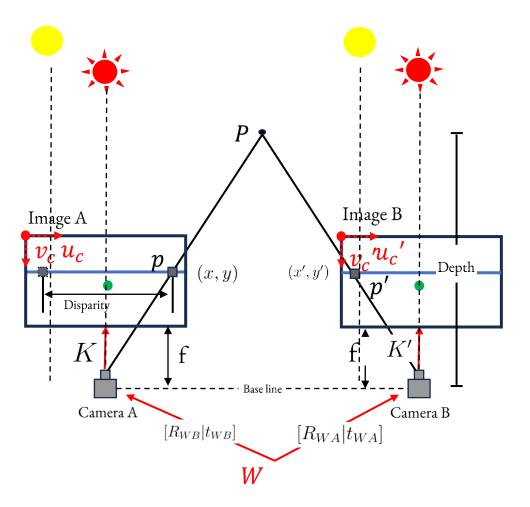
Case 1 (Different f_x , f_y) $K = \begin{pmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{pmatrix}$

$$K = \begin{pmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{pmatrix}$$



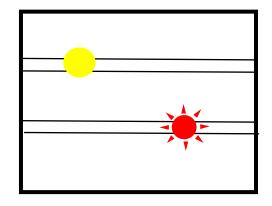


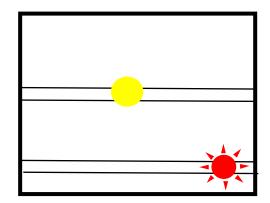
The Epipolar lines of the moon do not have the same vertical axis coordinate



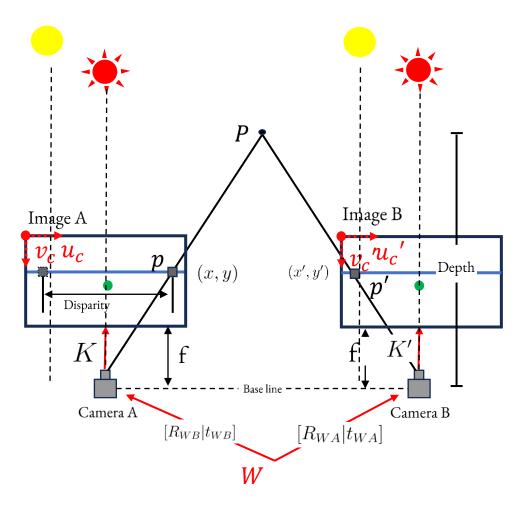
Case 2 (Different c_x , c_y) $K = \begin{pmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{pmatrix}$

$$K = \begin{pmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{pmatrix}$$

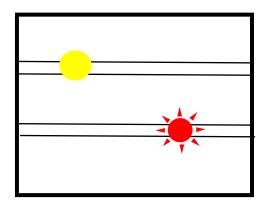


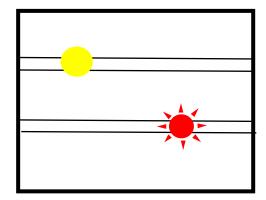


The Epipolar lines of both sun and moon do not have the same vertical axis coordinate



Case 3 (Same Intrinsic parameter)





Conclusion

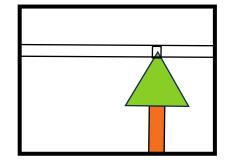
Same Intrinsic parameter

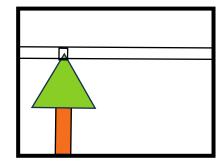
- All Epiline is always parallel to the horizontal axis

Same Camera

- All pair of correspondence points share the same vertical axis coordinates

Simple correspondence matching





Simple triangulization

$$Depth = \frac{f \times B}{Disparity}$$

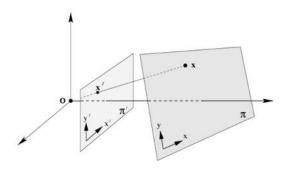
We have stereo images from various camera position

--- Rectification

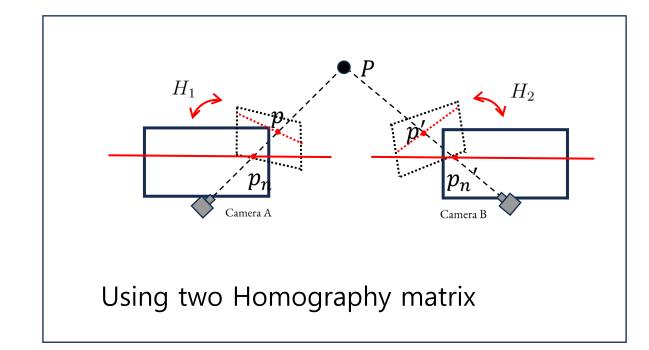
Rectification

Homography

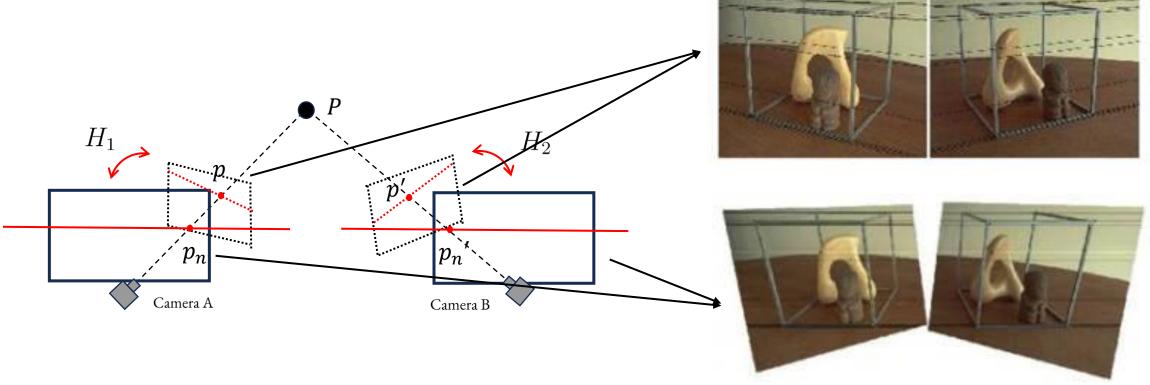
- 3x3 matrix representing a projective transformation between two planes
- Two images taken at the same location can be overlapped using homography



$$w \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} h_{11} h_{12} h_{13} \\ h_{21} h_{22} h_{23} \\ h_{31} h_{32} h_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

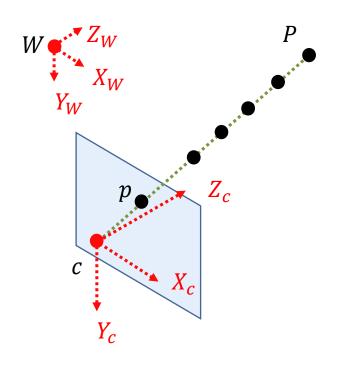


Rectification



Object

- All apilines are parallel to the horizontal axis of the image plane
- Two image coordinates for the same point P have the same vertical coordinates



Camera calibration

$$\lambda \tilde{m} = K[R_{CW}|t_{CW}]\tilde{w}$$

 \tilde{m} : Image coordinate

K: Intrinsic parameter

 $[R_{CW}|t_{CW}]$: Extrinsic parameter

 \tilde{w} : World cordinate

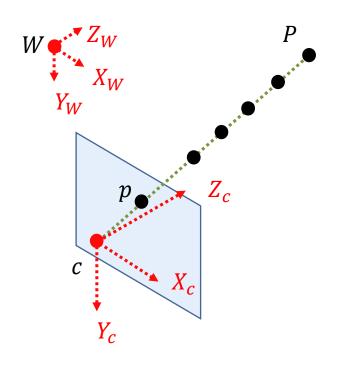
Camera center

$$c = -R_{CW}^{-1} t_{CW}$$
 c : World coordinate of camera center $t_{CW} = -R_{CW} c$

Projection matrix

$$\tilde{P} = K[R_{CW}|t_{CW}] = K[R_{CW}|-R_{CW}c]$$
 (where $Q = KR_{CW}$) $\tilde{P} = [Q|-Qc]$

$$\tilde{P} = [Q| - Qc]$$



Camera calibration

$$\lambda \tilde{m} = K[R_{CW}| - R_{CW}c]\tilde{w} \begin{cases} \tilde{m} & : \text{Image coordinate} \\ K & : \text{Intrinsic parameter} \\ [R_{CW}|t_{CW}] & : \text{Extrinsic parameter} \\ \tilde{w} & : \text{World coordinate} \end{cases}$$

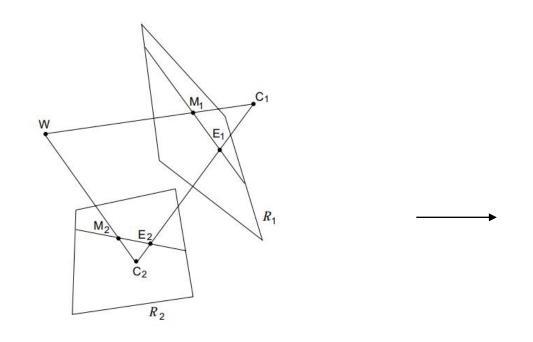
 \tilde{m} : Image coordinate

World cordinate

$$\tilde{w} = \begin{pmatrix} w \\ 1 \end{pmatrix} \longrightarrow \lambda \tilde{m} = K[R_{CW}|-R_{CW}c] \begin{pmatrix} w \\ 1 \end{pmatrix}$$

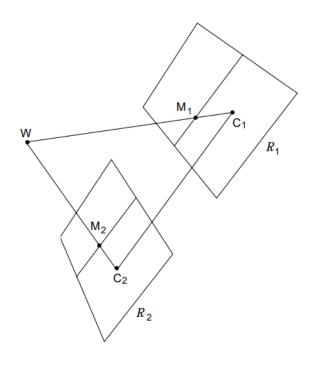
$$\lambda \tilde{m} = KR_{CW}(w-c)$$

$$w = c + (KR_{CW})^{-1} \lambda \tilde{m}$$



$$\tilde{P}_o 1 = K_{o1} [R_{o1}| - R_{o1} c_1]$$

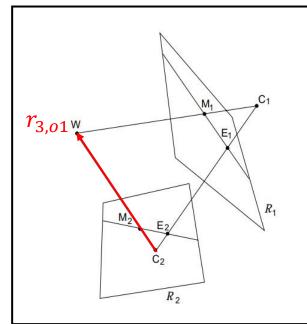
$$\tilde{P}_o 2 = K_{o2}[R_{o2}| - R_{o2}c_2]$$

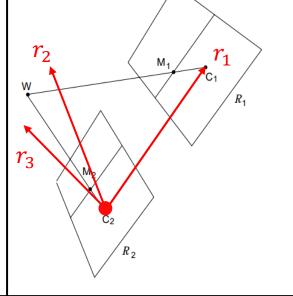


$$\tilde{P}_{n1} = K_n[R_n| - R_n c_1]$$

$$\tilde{P}_{n2} = K_n[R_n| - R_n c_2]$$

Rectification: The process of making a virtual camera





$$P_o 1 = K_{o1}[R_{o1}| - R_{o1}c_1]$$

$$\tilde{P}_o 2 = K_{o2}[R_{o2}| - R_{o2}c_2]$$

$$\tilde{P}_{o}1 = K_{o1}[R_{o1}| - R_{o1}c_1]$$
 $\tilde{P}_{n1} = K_{n}[R_{n}| - R_{n}c_1]$
 $\tilde{P}_{o}2 = K_{o2}[R_{o2}| - R_{o2}c_2]$
 $\tilde{P}_{n2} = K_{n}[R_{n}| - R_{n}c_2]$

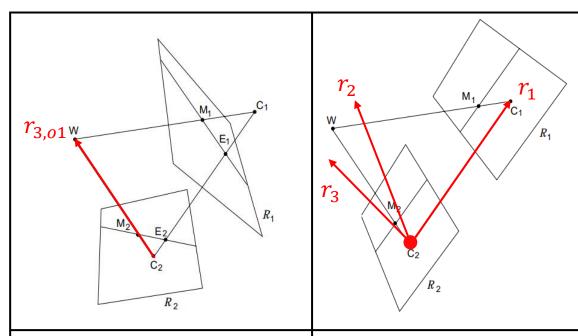
R_n

$$R = \begin{bmatrix} r_1^T \\ r_2^T \\ r_3^T \end{bmatrix} \quad \begin{cases} r_1 & : \text{ camera x-dir (world expression)} \\ r_2 & : \text{ camera y-dir (world expression)} \\ r_3 & : \text{ camera z-dir (world expression)} \end{cases}$$

$$\tilde{P}_{o}1 = [Q_{o1}| - Q_{o1}c_{1}]$$
 $\tilde{P}_{o}2 = [Q_{o2}| - Q_{o2}c_{2}]$
 C_{1}, C_{2}

$$r_1 = rac{c_1 - c_2}{\|c_1 - c_2\|} \qquad r_2 = r_{3,o1} imes r_1 \qquad r_3 = r_1 imes r_2$$

 r_3 , o1: The principal axis dir (old camera)



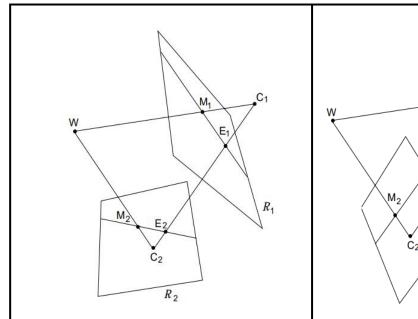
$$\tilde{P}_o 1 = K_{o1}[R_{o1}| - R_{o1}c_1]$$

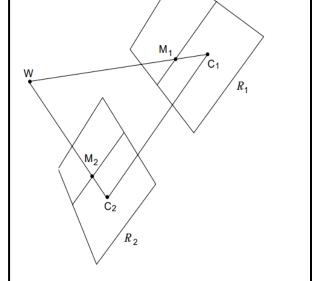
$$\tilde{P}_o 2 = K_{o2}[R_{o2}| - R_{o2}c_2]$$

$$\tilde{P}_{o}1 = K_{o1}[R_{o1}| - R_{o1}c_1]$$
 $\tilde{P}_{o}1 = K_{n}[R_{n}| - R_{n}c_1]$
 $\tilde{P}_{o}2 = K_{o2}[R_{o2}| - R_{o2}c_2]$
 $\tilde{P}_{n2} = K_{n}[R_{n}| - R_{n}c_2]$

$$A_n = (A_1 + A_2)/2$$

By averaging the two intrinsic parameter





$$\tilde{P}_{o}1 = K_{o1}[R_{o1}| - R_{o1}c_{1}] \quad P_{n1} = K_{n}[R_{n}| - R_{n}c_{1}]
\tilde{P}_{o}2 = K_{o2}[R_{o2}| - R_{o2}c_{2}] \quad \tilde{P}_{n2} = K_{n}[R_{n}| - R_{n}c_{2}]$$

$$P_{n1} = K_n[R_n| - R_n c_1]$$

$$\tilde{P}_{n2} = K_n[R_n| - R_n c_2]$$

$$w = c_1 + \lambda_{o1} (K_{o1}R_{o1})^{-1} \tilde{m}_{o1}$$
$$w = c_1 + \lambda_{n1} (K_n R_n)^{-1} \tilde{m}_{n1}$$

The world coordinate is same

$$ilde{m}_{n1} = \lambda_{1}' (K_{n}R_{n})(K_{o1}R_{o1})^{-1} ilde{m}_{o1} \ extstyle H_{1} = (K_{n}R_{n})(K_{o1}R_{o1})^{-1}$$

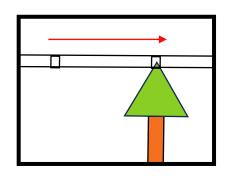
 H_2 is also calculated in the same way

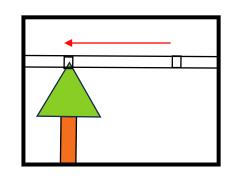
Algorithm design

Rectification

We can assume ideal modeling in designing algorithm

- All Epiline is always parallel to the horizontal axis
- All pair of correspondence points share the same vertical axis coordinates





- Starting from own coordinates and moving along the horizontal axis (Direction is different)
- Calculating the disparity with the corresponding point

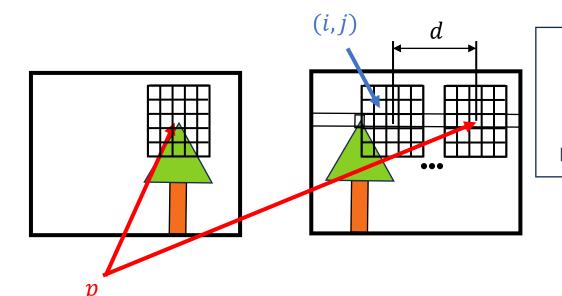
$$Depth = \frac{f \times B}{Disparity}$$

Disparity Map

Depth Map

Block Matching

Comparing pixels on a block-by-block basis to find matching points



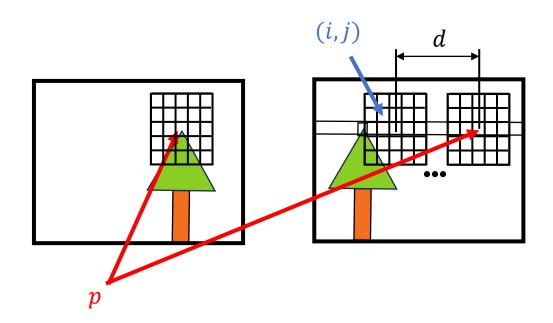
- Comparing pixels one by one has very low accuracy
- It measures how well the features within the block match each other

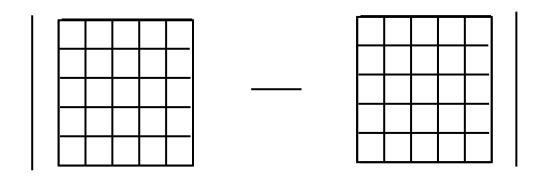
→ Cost function

$$C(p,d) = \sum_{(i,j) \in W} f(i,j,p,d)$$

Sum of Absolute Differences

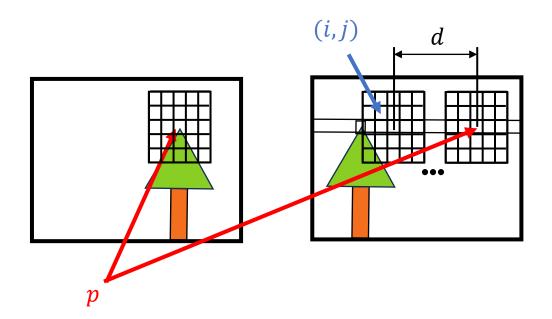
$$C(p,d) = \sum_{(i,j) \in W} |I_l(i,j) - I_r(i-d,j)|$$



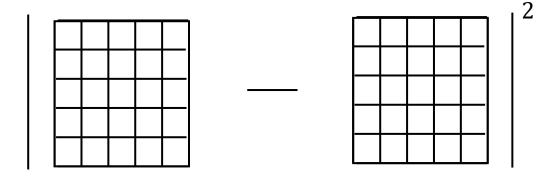


- SAD is sensitive to noise and brightness change
- Feature matching is good when cost is low

Sum of Squared Differences



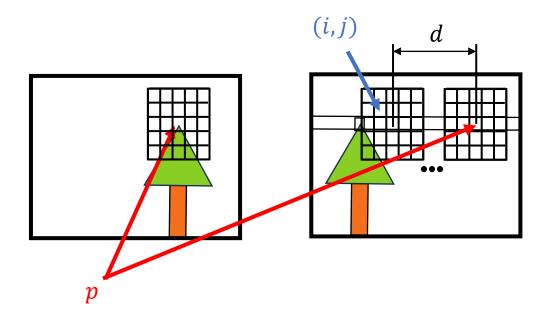
$$C(p,d) = \sum_{(i,j) \in W} |I_l(i,j) - I_r(i-d,j)|^2$$

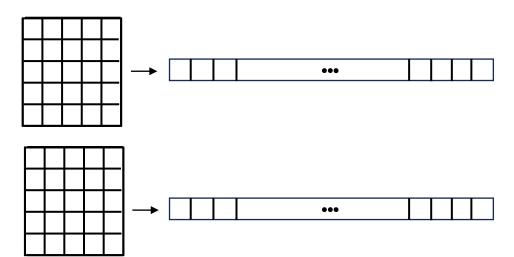


- SAS is sensitive to noise and brightness change
- Feature matching is good when cost is low

Normalized Cross Correlation

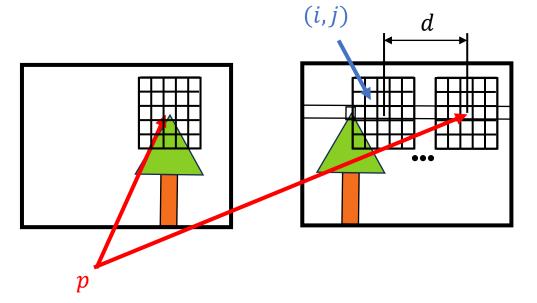
$$C(p,d) = \frac{\sum\limits_{(i,j) \in W} I_l(i,j) I_r(i-d,j)}{\sqrt{\sum\limits_{(i,j) \in W} I_l^2(i,j) \sum\limits_{(i,j) \in W} I_r^2(i-d,j)}}$$

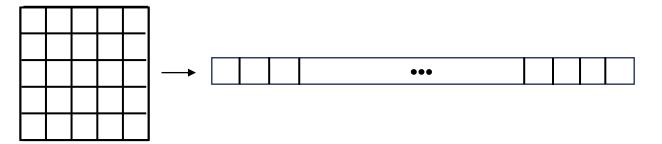




- NCC is less sensitive to noise and brightness change
- Feature matching is good when cost is closer to 1

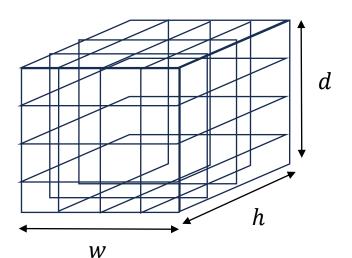
Census transform





- If pixel values are higher than the central pixel value, assign 1
 - If two arrays are different, assign 1
- Cost: How many different value in two array

Local Matching



Cost function

$$C(p,d) = \sum_{(i,j)\in W} f(i,j,p,d)$$

→ 3 variable function

Local Matching

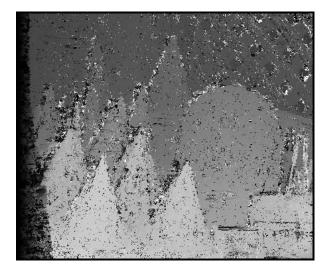
- 1. Cost calculation
- 2. Making cost volume
- 2. Select *d* value at each pixel

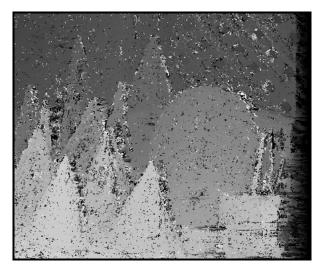
The process of finding the corresponding point with the highest similarity at each pixel

Local matching

Problem

Continuity of cost volume is not considered





Local matching

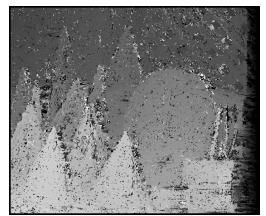
pros

- Time complexity of algorithm is low

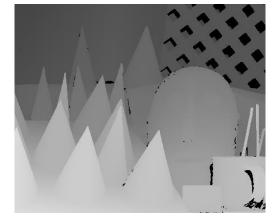
cons

- It is heavily influenced by noise
- Impossible to make accurate depth map
- Depth map is not continuos

Local matching



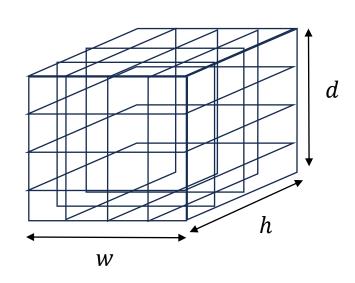
Ground truth





Energy Function

Global Matching



- 1. Cost calculation
- 2. Making cost volume

Same with Local matching

4. Optimize Energy function

That is, Global matching considers the continuity of cost volume

$$\mathcal{C} = \mathcal{C}_{data} + \lambda \mathcal{C}_{discon} \qquad \mathcal{C}_{data}(p,d) = \sum_{p \in W} f(p,d)$$
 similarity
$$\text{continuity}$$

$$\mathcal{C}(d) = \sum_{p} \left(\mathcal{C}_{data}(\mathbf{p},d_{\mathbf{p}}) + \sum_{\mathbf{q} \in \mathcal{N}_{\mathbf{p}}} P_{1} \cdot T[|d_{\mathbf{p}} - d_{\mathbf{q}}| = 1] + \sum_{\mathbf{q} \in \mathcal{N}_{\mathbf{p}}} P_{2} \cdot T[|d_{\mathbf{p}} - d_{\mathbf{q}}| > 1] \right)$$

$$\mathcal{C}(d) = \sum_{p} \left(\mathcal{C}_{data}(\mathbf{p}, d_{\mathbf{p}}) + \sum_{\mathbf{q} \in \mathcal{N}_{\mathbf{p}}} P_{1} \cdot T[|d_{\mathbf{p}} - d_{\mathbf{q}}| = 1] + \sum_{\mathbf{q} \in \mathcal{N}_{\mathbf{p}}} P_{2} \cdot T[|d_{\mathbf{p}} - d_{\mathbf{q}}| > 1] \right)$$

 $\mathcal{N}_{\mathbf{p}}$: local neighborhood around pixel \mathbf{p} in the reference image I

$$T(arg) = \begin{cases} 1 & (arg = true) \\ 0 & (arg = false) \end{cases}$$

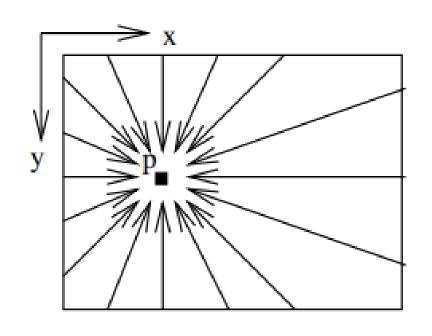
- P_1 Penalty for small disparity change
- P_2 Penalty for large disparity change

$$\mathcal{C}(d) = \sum_{p} \left(\mathcal{C}_{data}(\mathbf{p}, d_{\mathbf{p}}) + \sum_{\mathbf{q} \in \mathcal{N}_{\mathbf{p}}} P_{1} \cdot T[|d_{\mathbf{p}} - d_{\mathbf{q}}| = 1] + \sum_{\mathbf{q} \in \mathcal{N}_{\mathbf{p}}} P_{2} \cdot T[|d_{\mathbf{p}} - d_{\mathbf{q}}| > 1] \right)$$

To determine the disparity of the current pixel, it is necessary to simultaneously determine the disparities of adjacent pixels.

2D global optimization(Simultaneously minimizing the disparity value for all image pixels)

N-P complete problem(The time complexity increases exponentially)



Assumption

Adjacent pixels coming from different directions do not influence each other

Result

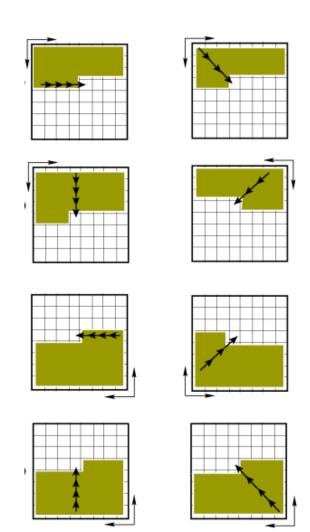
2D optimization -> Several 1D optimization

Path cost

$$L_r(p,d) = C(p,d) + \min \begin{bmatrix} L_r(p-r,d), \\ L_r(p-r,d\pm 1) + P_1, \\ \min L_r(p-r,k) + P_2 \end{bmatrix} - \min L_r(p-r,k)$$

Total cost

$$C(p,d) = \sum_{r} L_{r}(p,d)$$

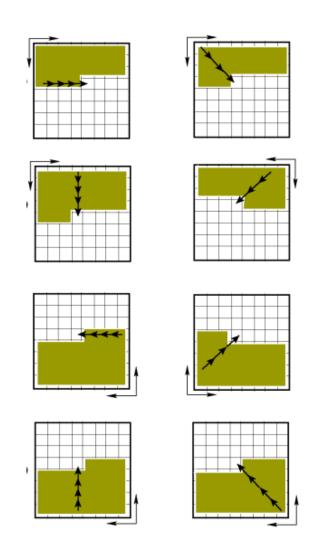


Dynamic Programming

$$L_r(p,d) = C(p,d) + \min \begin{bmatrix} L_r(p-r,d), \\ L_r(p-r,d\pm 1) + P_1, \\ \min L_r(p-r,k) + P_2 \end{bmatrix} - \min L_r(p-r,k)$$

 $L_r(p,d) \longrightarrow 4$ variable function

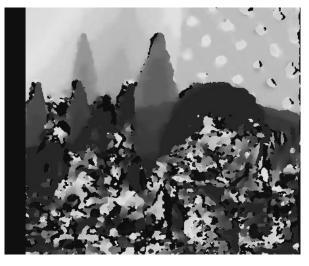
store path cost in (width, height, depth, path) array

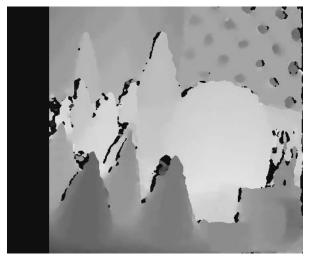


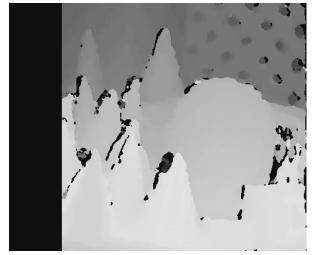
Parallel processing

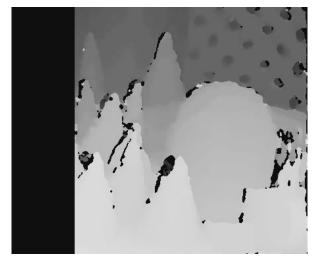
SGBM algorithm can perform parallel processing when calculating path costs for each direction

Advantage for real time processing









Thank You